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SUMMARY

The 2013–2015 West African epidemic of Ebola
virus disease (EVD) reminds us of how little is known
about biosafety level 4 viruses. Like Ebola virus,
Lassa virus (LASV) can cause hemorrhagic fever
with high case fatality rates.We generated a genomic
catalog of almost 200 LASV sequences from clinical
and rodent reservoir samples.We show that whereas
the 2013–2015 EVD epidemic is fueled by human-to-
human transmissions, LASV infections mainly result
from reservoir-to-human infections. We elucidated
the spread of LASV across West Africa and show
that this migration was accompanied by changes
in LASV genome abundance, fatality rates, codon
738 Cell 162, 738–750, August 13, 2015 ª2015 Elsevier Inc.
adaptation, and translational efficiency. By investi-
gating intrahost evolution, we found that mutations
accumulate in epitopes of viral surface proteins, sug-
gesting selection for immune escape. This catalog
will serve as a foundation for the development of vac-
cines and diagnostics.

INTRODUCTION

Viruses that cause human hemorrhagic fevers, such as Ebola,

Marburg, and Lassa, are classified as BL-4 agents due to their

high fatality rates and lack of effective treatment (Paessler and

Walker, 2013). With increasing globalization, changing climatic

conditions and an ever-expanding human population, our inter-

actions with these pathogens are likely to increase (Gire et al.,
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Figure 1. Lassa Fever Is a Viral Hemorrhagic Fever Endemic in West Africa, where Ebola Virus Disease Broke Out in 2014

(A) Overview of the LF endemic zone. Study sites are marked. The LF risk zone was defined according to Fichet-Calvet and Rogers (2009).

(B) Schematic of LASV virions.

(C) Summary of LASV sequence data (%ORF coverage = average coverage of open reading frames; x Coverage =median base pair (bp) coverage;% bp >Q32 =

fraction of bp with a phred-score > 32.

(D) Plot of the combined normalized (to the sample average) genome coverages (matched dataset, n = 167).

See also Figure S1, Tables S1 and S2, and Data S1.
2012; Lipkin, 2013). The 2013–2015 Ebola virus disease (EVD)

epidemic (Baize et al., 2014) is a stark reminder that a better

understanding of these viruses is required to develop effective

therapeutics and vaccines, as standard containment and isola-

tion can be insufficient to prevent large-scale outbreaks (Pandey

et al., 2014).

Lassa virus (LASV) is unique among BL-4 agents in being a

common human pathogen, causing endemic disease in much

of West Africa, primarily in Sierra Leone, Guinea, Liberia, and

Nigeria (Figure 1A). Infection with LASV can lead to acute Lassa

fever (LF) with symptoms similar to EVD. LASV is estimated to

hospitalize tens of thousands and cause several thousand

deaths each year. Case fatality rates (CFRs) among hospitalized

LF patients can exceed 50%, although numerous sub-clinical in-

fections are believed to occur (Troup et al., 1970; McCormick

and Fisher-Hoch, 2002). Most patients are infected by exposure

to excreta from the rodentMastomys natalensis, which functions

as a reservoir and maintains persistent infections (Lecompte

et al., 2006); human-to-human transmissions have also been re-

ported, however, primarily in hospital settings (McCormick and

Fisher-Hoch, 2002; Lo Iacono et al., 2015).

LASV is a single-stranded RNA virus in the family Arenavir-

idae. Its genome consists of two segments, L (7.3 kb) and

S (3.4 kb), which encode four proteins: Z (matrix), L (polymer-

ase), NP (nucleoprotein), and GPC, which is post-translation-

ally cleaved into two peptides, GP1 and GP2, that form the

transmembrane glycoprotein (Figure 1B). EBOV (Zaire ebola-

virus) is a single-stranded RNA virus in the family Filoviridae
with a 19-kb genome encoding seven proteins. While the

prevalence of LASV makes it a rare model for studying the

evolution of a BL-4 pathogen, only 12 whole-genome LASV

sequences were available prior to this study (Djavani et al.,

1997; Vieth et al., 2004).

RESULTS

Generation of a Large Dataset of Lassa Virus Genomes
We established partnerships with Kenema Government Hospital

(KGH), Sierra Leone, and Irrua Specialist Teaching Hospital

(ISTH), Nigeria, and collected samples from LF patients between

2008 and 2013.We implemented diagnostics, training, and infra-

structure to ensure high-quality and safe sample collection from

patients hospitalized with LF (Shaffer et al., 2014).

We sequenced 183 LASV genomes from these clinical

samples, 11 LASV genomes from M. natalensis field samples,

and two genomes from viral laboratory isolates (Figure 1C; Ta-

ble S1); we deposited all sequence data at NCBI (BioProject

PRJNA254017) before publication. Most samples contained

>50% human material and yielded <1% LASV reads (Figures

S1A and S1B; Table S1). Genome coverage was fairly uniform,

with higher coverage of the S than the L segment (Figure 1D),

consistent with a greater copy number of S (Southern, 1996).

Since we used an unbiased sequencing approach, we were

also able to assemble 7,028 unique open reading frames from

the transcriptome of M. natalensis, a species not previously

sequenced (Figures S1C–S1E; Data S1).
Cell 162, 738–750, August 13, 2015 ª2015 Elsevier Inc. 739
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Figure 2. LASV Is More Diverse than EBOV and Has Ancient Origins in Nigeria

(A) Phylogenetic tree of LASV S segments (n = 211) (outer ring: gray, previously sequenced; orange, sequenced from M. natalensis; scale bar, nucleotide

substitutions/site; I–IV, lineages as defined by Bowen et al. (2000).

(B) Scaled trees of LASV L and S segments, as well as EBOV. Trees are shown with the same scale of genetic distance (0.1 nucleotide substitutions/site), except

for EBOV, which was magnified 103 (0.01 nucleotide substitutions/site). LASV lineages are shown (Nig., Nigeria; MRU, Mano River Union).

(C and D) Root-to-tip distance versus collection date for (C) EBOV from the West African EVD epidemic (2014; n = 131) or (D) LASV from Sierra Leone (2012;

n = 21). Confidence intervals (95%) for linear regression fits are shown in blue.

(E) The%pairwise differences (log scale) in EBOV lineages from the 2014 EVD epidemic (March–October 2014; n = 116) and LASV lineages fromSierra Leone (SL;

2009–2013; n = 60) and Nigeria (NG; 2009–2012; n = 83). The % divergence was calculated within the countries for each year separately and pooled. Error bars

represent SD.

(F–H) Bayesian coalescent analysis of LASV samples (matched dataset, n = 179). (F) Substitution rates. (G) LASV L segment tMRCA for each country (median

values; ya, years ago). Gray arrows depict the likely spread of LASV. An asterisk indicates a tMRCA that was dependent on only one sequence (AV) from outside

Nigeria and MRU. (H) Probability distributions for the estimated tMRCAs with median marked.

See also Figures S1F–S1H, S2, S3, S4, and S5, Table S2, and Data S1, S2, and S3.
Lassa Virus Strains Are Genetically Diverse and Cluster
Based on Geographic Location
We first examined patterns of variation and phylogenetic rela-

tionships. We found high levels of LASV nucleotide diversity,

with strain variation up to 32%and 25% for the L andS segments

(Figures 2A, S1F, and S1G). This is substantially higher than pre-

vious findings based on LASV fragments (Bowen et al., 2000),

andmuch higher than EBOV, which is more than 97% conserved

across all sequenced strains (Figures 2B and S1H). We

confirmed previous findings (Bowen et al., 2000) that LASV

clusters into four major clades: three in Nigeria and one from
740 Cell 162, 738–750, August 13, 2015 ª2015 Elsevier Inc.
the Mano River Union countries (MRU) of Sierra Leone, Guinea,

and Liberia (Figure 2A; Data S1, S2, and S3). We found no evi-

dence for host-specific clades of LASV lineages; rather, samples

from humans and M. natalensis clustered together (Figure 2A;

Data S1, S2, and S3). We did not identify any recombination

events within segments, but did find evidence for reassortment

between segments in three samples (Figures S2A–S2G). This

could be explained by infections of individual hosts with multiple

LASV lineages, followed by shuffling of segments, a process

previously observed in vitro with LASV (Lukashevich, 1992) and

in vivo with other arenaviruses (Stenglein et al., 2015).



Lassa Virus Infections Are the Result of Multiple
Independent Reservoir-to-Human Transmissions
Recent studiessuggest that the2013–2015EVDepidemic ismain-

tained by sustained human-to-human transmission (Gire et al.,

2014) after an initial ‘‘spillover’’ event from a likely animal reservoir

(Baize et al., 2014). Similarly, it has been suggested that up to 20%

of LF cases also arise from human-to-human transmissions (Lo

Iacono et al., 2015). Sustained human-to-human transmission

should result in a ‘‘ladder-like’’ structure of the phylogenetic tree

along with a strong correlation between a sample’s collection

date and its genetic distance from the root of the tree over a short

time period. Based on data from the 2013–2015 EVD epidemic

(Team, 2014), we defined that time period as one year. While

collection date is strongly correlated with root-to-tip distance for

EBOV from the 2013–2015 EVD epidemic (R2 = 0.64; Figure 2C;

Table S2), the same correlation is absent for LASV sampled over

a similar time period (R2 = 0.0001; Figure 2D; Table S2).

Human-to-human transmission should also result in clustering

of contemporaneous viral sequences on the tree. While this is

pervasive across the 2013–2015 EVD epidemic samples (Gire

et al., 2014) (Data S1), we found that only 5 out of 169 (3%)

LASV sequences from patients resulted in such clusters (Data

S1 and S3). As M. natalensis serves as the reservoir host for

LASV—and presumably maintain LASV diversity via sustained

rodent-to-rodent transmission chains—we would expect rodent

samples to group into more defined clusters. Indeed, 5 out of 10

(50%) LASV sequences from M. natalensis formed clusters

consistent with rodent-to-rodent transmissions (Data S1 and

S3). Finally, we also found that the average pairwise divergence

for EBOV lineages in Sierra Leone from the 2013–2015 EVD

epidemic was much lower than that observed for LASV lineages

within individual years from Sierra Leone (Figure 2E), despite

similar observed substitution rates (Figure 2F). These three lines

of evidence suggest that, while EBOV during the 2013–2015 EVD

epidemic was transmitted through human-to-human contact,

most human LASV infections represent independent transmis-

sions from a genetically diverse reservoir.

Lassa Virus Has Ancient Origins in Modern-Day Nigeria
and Has Recently Spread across West Africa
While EBOV and LASV were both discovered in the latter part

of the 20th century—1976 and 1969, respectively—their origins

likely vary greatly (Commission, 1978; Frame et al., 1970).

Reports suggest that all EVD outbreaks share a common

ancestor within the last fifty years (Carroll et al., 2013; Dudas

and Rambaut, 2014; Calvignac-Spencer et al., 2014; Gire

et al., 2014). In contrast, the widespread persistence of LASV

in M. natalensis, and evidence in the human genome of natural

selection linked to LASV resistance (Andersen et al., 2012), sug-

gest that LASV might be a long-standing human pathogen.

Usingmolecular dating, we found that extant LASV strains likely

originated inmodern-dayNigeriamore than a thousand years ago

and spread into neighboringWest African countries within the last

several hundred years (Figures 2G and 2H). We first examined

evidence for a molecular clock by comparing sample collection

dates and root-to-tip distances across the entire LASV tree. In

contrast to the shorter timescales analyzed above (Figure 2D),

here we found significant evidence for a molecular clock (R2 =
0.38, p value < 0.0001). This allowed us to calculate the time

to the most recent common ancestor (tMRCA) using Bayesian

coalescent analysis (Drummond et al., 2012). We estimated the

tMRCA of sampled extant LASV strains to be a little over one

thousand years for the L segment (FigureS2H; Table S2;median=

1,057 years ago [ya]; 915 ya–1,218 ya; 95% highest posterior

density [HPD]) and 650 years for the S segment (Figure S2I; Table

S2; median = 631 ya; 519 ya–748 ya, 95% HPD). While LASV

strains inNigeria have the same tMRCA as all extant strains, those

in Sierra Leone have an estimated tMRCA of only 150 years (Fig-

ures 2G and 2H; median = 153 ya; 137 ya–171 ya; 95% HPD).

We tested the sensitivity of our results to key analysis param-

eters that could severely affect our tMRCA estimates (Wertheim

and Kosakovsky Pond, 2011; Wertheim et al., 2013). We found

that our estimates were robust to the choice of all tested param-

eters, including evolutionary model, geographical separations,

and exclusion or inclusion of older ‘‘anchoring’’ sequences,

e.g., the 1969 Pinneo strain (Figures S3 and S4; Table S2). In

linear regression of root-to-tip distance of samples on the date

of collection, the sequences from theMRU showed the strongest

evidence of temporal structure, suggesting that the dating is

most reliable within that region (Figure S4).

Non-Nigerian Lassa Virus Strains Have Higher Codon
Adaptation to Mammalian Hosts
Previous studies have shown that viruses can adapt their codon

usage to that of their hosts for translational efficiency (Sharp and

Li, 1987; Bahir et al., 2009; Butt et al., 2014; Hershberg and

Petrov, 2008). We examined the codon adaptation index (CAI)

of LASV and EBOV to different hosts. CAI quantifies how well

synonymous codon choice in the viral genome matches that of

a potential host genome.

We found that LASV had a higher mean CAI than EBOV, and a

similar CAI distribution across different potential mammalian

hosts (Figure 3A). There was a strong linear correlation between

the CAI of LASV to human and to M. natalensis, regardless of

which organism LASV was sequenced from (Figure S5A). In

agreement with previous studies (Bahir et al., 2009), this

suggests that codon adaptation to one mammal also leads to

adaptation to another.

We also compared LASV sequences from patients in Sierra

Leone to those fromNigeria and found that the former had signif-

icantly higher CAI (p value < 0.001, permutation test) (Figure 3B).

This apparent ‘‘burst’’ of codon adaptation as LASV spread into

Sierra Leone began on the branch leading out of Nigeria and

remained high in most non-Nigerian strains (Figures 3C, 3D,

and S5B–S5E), with an even distribution across the LASV

genome (Figure S5F).

As it has been suggested that dinucleotide usage play a role in

determining translational efficiency of RNA viruses (Tulloch et al.,

2014), we investigated whether there was a difference between

Nigerian and Sierra Leonean strains, but did not observe any sig-

nificant skew (Figures S5G and S5H).

Lassa VirusGenomeAbundance andCase Fatality Rates
Differ between Nigeria and Sierra Leone
Increased codon optimization might lead to increased viral

output (Plotkin and Kudla, 2011) and therefore higher viral titers
Cell 162, 738–750, August 13, 2015 ª2015 Elsevier Inc. 741
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Figure 3. Increased Codon Adaptation of

Non-Nigerian LASV Strains

(A) Codon adaptation index (CAI) of individual

LASV (orange) and EBOV (gray) sequences to four

mammalian hosts, normalized by GC and amino

acid content.

(B) Normalized CAI (to human) of LASV sequences

plotted against their distance (aa substitutions/

site) to the root of the tree. (C) Phylogeny of the

LASV L genes (scale bar, substitutions/site). (D) A

phenogram depicting the phylogeny from (C) with

branch lengths representing CAI (scale bar, con-

verted Z score).

(C and D) Trees were rooted on Pinneo (data not

shown; batch 1 dataset).

See also Table S2.
(Lauring et al., 2012) for non-Nigerian strains. With standardized

inclusion criteria at our field sites (Supplemental Experimental

Procedures), we tested this hypothesis by using qPCR to quan-

tify LASV genome abundance.We found significantly more LASV

genomes in patients fromSierra Leone than in those fromNigeria

(Figure 4A). LASV genome abundance in Sierra Leone was

similar to that observed in EBOV patients from the same hospital

(KGH; Figure 4A) and decreased over the course of the infection

(Figure S5I), likely due to treatment with the antiviral drug ribavirin

(McCormick et al., 1986). Next, we binned the LASV samples into

those in the top or bottom 50% CAI from within each country,

and compared LASV genome abundance between bins. In Sierra

Leone, individual LASV sequences with high CAI tended to have

higher genome copy numbers (p value < 0.05, Mann-Whitney

test) but no trend was visible in Nigeria (Figures 4B and 4C).

This suggests that CAI may affect LASV replication rate and

abundance.

Since increased viremia of LASV in LF patients is correlated

with higher fatality rates (McCormick and Fisher-Hoch, 2002),

we might also expect CFRs to be higher in patients from Sierra

Leone than from Nigeria. Again using strict criteria for inclusion,

we found a significantly higher CFR (p value = 0.01; Fisher’s

exact test) in Sierra Leonean patients than in their Nigerian coun-

terparts (81% versus 60%; Figure 4D). While the treatment op-

tions for LF patients are similar in the two countries, other factors

could also affect genome abundances and CFRs. In particular,

delay in clinical care could bias our estimates; however, self-
742 Cell 162, 738–750, August 13, 2015 ª2015 Elsevier Inc.
reported times from onset of symptoms

to hospital admission are the same in

the two countries (average = 9.3 days;

Figure 4E).

Nigerian Lassa Virus Strains Have
Higher Protein Output than Do
Sierra Leonean Strains
Although we observed a correlation

among CAI, viral genome abundance,

and CFR, it remained unclear whether

this is driven by differences in protein

translation efficiency between Nigerian

and Sierra Leonean LASV strains. We de-
signed an experimental system to estimate translational activity

for a single LASV gene with different CAI values. We randomly

selected 20 LASV sequences from Nigeria and Sierra Leone

and fused the first 699 bp of their NP genes (NP1–699) to lucif-

erase, before cloning into expression vectors for transfection

or in vitro translation experiments (Figure 4F). Readout of lucif-

erase activity allowed us to detect differences in translational

activity of the chimeric transcripts. As controls, we codon-opti-

mized one LASV sequence from Nigeria and one from Sierra

Leone, for an upper bound on NP1–699-luciferase translational

efficiency.

For both transfection and in vitro translation experiments, we

observed a significant difference in translational output of the

tested NP1–699-luciferase genes, with Nigerian versions having

higher outputs (Figures 4G and 4H). This was the opposite of

the expectation based on CAI because the Sierra Leonean

sequences had higher CAI (Table S2). Nigerian versions also

had higher outputs for the codon-optimized forms of NP1�699

(Figure 4H), suggesting that Nigerian sequences are intrinsically

more efficient or stable.

To test whether these observations were specific to NP, we

repeated the in vitro translation experiment using the first

736 bp of ten LASV GPC genes (Figure 4F). Once again, we

found that Nigerian genes had significantly higher translational

output (Figure 4I). These results suggest that there is a difference

in the translational output between LASV strains from Nigeria

and Sierra Leone that is independent of the variation in CAI.
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Figure 4. Difference in Viral Output between Nigerian and Sierra Leonean LASV Strains
(A) Relative abundance of LASV and EBOV genome copies (log ratio of LASV or EBOV copies/microliter to 18S rRNA copies/microliter; ***p < 0.001, Mann-

Whitney test).

(B and C) Relative abundance of LASV genome copies when partitioned into sequences in the top or bottom half of CAI scores. (B) Samples from Nigeria.

(C) Samples from Sierra Leone (*p value < 0.05, Mann-Whitney test).

(D) Case fatality rates calculated for patients from Sierra Leone (n = 67) and Nigeria (n = 40). p value from Fisher’s exact test.

(E) Patient-reported days from the onset of symptoms until admission to the hospital. The mean values are displayed with red bars.

(F) DNA plasmids encoding the first 699 nucleotides of LASV NP or the first 736 nucleotides of LASV GPC.

(G) NP-reporter expression was measured in HEK293 cells by the ratio of fLuc/rLuc 20 hr post-transfection.

(H and I) In vitro transcription of (H) NP- or (I) GPC-reporter translation measured by gLuc luminescence after 21 hr.

All values were normalized to the average of each biological replicate (n = 3) (G–I). *p < 0.05, ***p < 0.0001, Mann-Whitney test; NG, Nigeria, SL, Sierra Leone.

See also Table S2.
Lassa Virus Is a More Diverse Intrahost than Is
Ebola Virus
The long-term evolution of viruses ultimately depends on muta-

tion and selection within individual hosts (Parameswaran et al.,

2012). Our deep sequencing allowed us to examine LASV intra-

host single-nucleotide variants (iSNVs) within individual human

and rodent hosts (Figure 5A). We called variants at a minimum

minor allele frequency (minMAF) of 5% and applied stringent

filtering (Supplemental Experimental Procedures). We validated

subsets of iSNVs using different sequencing technologies and

found that our results were consistent across platforms, experi-
mental replicates, library preparations, and variant calling

methods (Figures S5J–S5L and S6).

We found that M. natalensis generally harbors more LASV

iSNVs than humans (median iSNVs/kb = 1.5 versus 0.1; p value <

0.0001; Mann-Whitney test), consistent with longer, more

chronic infections (Figures 5B and S7A–S7D). LASV is a signifi-

cantly more diverse intrahost than is EBOV (accounting for dif-

ferences in sequence coverage between the two; median bp

coverage �2,0003 for EBOV [Gire et al., 2014] and �2503 for

LASV; Figure 1C; p value = 0.0005; Mann-Whitney test), with

an average number of iSNVs per covered site of 2.1 3 10�3 in
Cell 162, 738–750, August 13, 2015 ª2015 Elsevier Inc. 743
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Figure 5. Genetic Diversity and Selective

Pressures within and between Hosts

(A) iSNVs can be detected in Illumina reads.

(B) The number of iSNVs at 5% MAF or higher,

called in LASV (orange) and EBOV (gray).

(C) The normalized number of iSNVs per covered

site (80% calling power; 5% MAF). In both (B) and

(C), each circle represents one LASV or EBOV

sample; red bars denote the median; ***p < 0.001,

Mann-Whitney test; ns, not significant. Only sam-

ples with >503 coverage are included.

(D) dN/dS ratios for LASV and EBOV based

on iSNVs or fixed differences in consensus

sequences between hosts.

(E) dN/dS ratios for each LASV gene.

***p < 0.001, **p < 0.01, Permutation test; ns = not

significant (D and E). The very short Z gene was

excluded.

See also Figures S6 and S7, Table S2, and

Data S1.
LF patients, but only 1.33 10�4 in EVD patients (Figure 5C). This

difference is primarily driven by a subset of LASV-infected indi-

viduals that have >15 iSNVs—diversity similar to that observed

in M. natalensis (Figure 5C). Such high diversity—with iSNV

frequencies that appear stable over the course of infection

(Figure S7E)—was never observed in EVD patients (Figures 5B

and 5C).

LF is generally considered an acute disease in humans

(McCormick and Fisher-Hoch, 2002), but high numbers of iSNVs

could be explained by long-term chronic infections and/or adap-

tive evolution of LASV. An alternative explanation is multiple

infections; however, the wide range of allele frequencies (Fig-

ure S7F) and general lack of linkage between iSNVs (Table S2)

argues against this being the prevailing explanation. In addition,

the vast majority of iSNVs (94.4%) are transitions, rather than

transversion mutations (Figure S5L), which accumulate over

longer evolutionary timescales (Wakeley, 1996). This suggests

that most iSNVs are evolutionarily recent and that LASV iSNVs

arise mostly via de novo mutation within hosts, and more rarely

via transmission and multiple infections by circulating strains.

Natural Selection Is Acting on the Lassa Virus
Glycoprotein
Next, we investigated the role of natural selection in shaping in-

trahost variation. In LASV, we observed a significantly higher dN/

dS (p value = 0.0013; permuted McDonald-Kreitman test)—a

measure of selective constraint at the protein level—within hosts

than between hosts (Figure 5D). For EBOV, the trend was in the

same direction but was not statistically significant (Figure 5D).

Assuming that dN represents mostly deleterious mutations (Sha-
744 Cell 162, 738–750, August 13, 2015 ª2015 Elsevier Inc.
piro et al., 2009), this is consistent with

these mutations being purged by purify-

ing selection over evolutionary time

(Rocha et al., 2006). Because purifying

selection has less time to act within a

single host, dN/dS is higher within hosts

than between. However, the dN/dS of

�0.2 for LASV iSNVs is still much less
than �1 expected in the absence of any selection (Anisimova

and Liberles, 2007). In contrast, iSNVs in certain other viruses,

such as dengue, approach the neutral expectation of dN/dS

�1 (Holmes, 2003). Also, reflecting purifying selection on LASV

within hosts, the dN/dS ratio appears to decrease at higher

iSNV frequencies (Figure S7G). EBOV intrahost dN/dS is higher

than LASV (Figure 5D), consistent with LASV intrahost popula-

tions being subject to stronger (or a longer duration of) purifying

selection.

Intrahost dN/dS varied widely across LASV genes, suggesting

different selective pressures on individual genes. Most notably,

GPC genes sequenced from both human and M. natalensis,

had a significantly higher dN/dS ratio within hosts than between

hosts (Figure 5E). GPC encodes the only protein partially

exposed on the outside of the LASV particle (Figure 1B). It has

a significantly higher within-host dN/dS than does NP (p value <

0.05; Fisher’s exact test), the neighboring gene on the S segment

(Figure 5E), but similar between-host dN/dS. These results

suggest either a GPC-specific relaxation of within-host purifying

selection or within-host diversifying (positive) selection (Baum

et al., 2003).

Nonsynonymous Lassa Virus Intrahost Variants
Accumulate in Predicted Epitopes in the Glycoprotein
We hypothesized that immune pressures on LASV GPC could

drive within-host diversifying selection, favoring nonsynony-

mous iSNVs that impair immune detection by disrupting epi-

topes. This phenomenon has been reported for other viruses;

e.g., at the population-wide level in pandemic influenza A virus

(Bhatt et al., 2011). To evaluate whether iSNVs disrupt epitopes,
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Figure 6. Nonsynonymous iSNVs Are Overrepresented within Predicted B Cell Epitopes in LASV GPC

(A) The fraction of iSNVs within predicted B cell epitopes. The observed fraction is compared to the expected fraction (**p < 0.01, *p < 0.05, binomial test).

(B) Overlap between GPC epitopes and iSNVs. Epitopes were predicted separately in each sample (y axis) and overlaid with iSNVs from that sample.

(C) Fraction of iSNVs falling within predicted T cell epitopes (p value = binomial test).

(D and E) Binding of monoclonal antibodies (mAbs) to iSNV mutants in predicted B cell epitopes was tested in HEK293 cells. (D) Each circle corresponds to the

normalized average mean fluorescence intensity (MFI) measured by flow cytometry of each LASV GPC construct carrying either wild-type or iSNV mutations

(Supplemental Experimental Procedures). Each tested mAb is shown on the x axis. The MFI was normalized to the MFI of the empty vector control for each

experiment. (E) Binding to the GP1-specific mAbs 12.1F and 19.7E using constructs carrying either the major or minor population-wide allele at positions 89 and

114. For comparison, binding to mAb 36.1F, which requires GP2, is also shown. All MFI values are normalized to the MFI of binding to the GP2-specific mAb

37.2D. Error bars show the SD from four independent experiments; *p < 0.05, Mann-Whitney test.

See also Table S2 and Data S1.
we used a machine-learning method (El-Manzalawy et al., 2008)

to predict linear B cell epitopes in each LASV protein.

Nonsynonymous iSNVs in LASV GPC occurred in predicted B

cell epitopes significantly more than expected by chance (Fig-

ures 6A and 6B; p value < 0.01; binomial test). This was true

for LASV samples from patients and M. natalensis indepen-

dently, although the signal was stronger in patients (Figure 6A).

In contrast, synonymous iSNVs were randomly distributed

across GPC, consistent with their lack of impact on epitope

structure (Figures 6A and 6B). We observed a similar but weaker

trend for NP, although this difference only reached statistical

significance in M. natalensis (Figure 6A).

To test if nonsynonymous iSNVs interfere with B cell epitope

recognition, we reran the B cell epitope predictions, changing

single amino acids within the epitopes from the consensus call

to the iSNV variant. For 14 of the 18 predicted B cell epitopes,

changing the iSNV from the consensus to the variant allele signif-
icantly reduced the epitope score (Table S2; p value = 0.015,

Sign test).

To test if nonsynonymous iSNVs also appear to fall within T cell

epitopes, we predicted T cell epitopes in each LASV protein

(Supplemental Experimental Procedures). We found that nonsy-

nonymous iSNVs accumulated to some extent in LASV GPC,

although the results did not reach statistical significance (Fig-

ure 6C; p value = 0.07; binomial test).

Intrahost Variants Interfere with Antibody Binding
To investigate the functional effects of a subset of LASV iSNVs,

we created iSNV mutations in predicted B cell epitopes in GP1

(Supplemental Experimental Procedures), expressed them in

HEK293 cells, and tested their binding to a panel of GPC-specific

monoclonal antibodies (mAbs) using flow cytometry. These mu-

tations led to a significant drop in the averagemean fluorescence

intensity (MFI) for GP1-specific mAbs (Figure 6D), consistent
Cell 162, 738–750, August 13, 2015 ª2015 Elsevier Inc. 745
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with diminished mAb binding. Similarly, when we investigated

the effects of single-point mutations within GP1 epitopes, we

found that minor alleles in the LASV population displayed signif-

icantly reduced binding to GP1-specific mAbs (Figure 6E).

These observations suggest that the host adaptive immune

system imposes selective pressures on the intrahost viral popu-

lation, driving an accumulation of nonsynonymous iSNVs in

LASV GPC.

Nonsynonymous Lassa Virus Intrahost Variants Tend
Not to Become Fixed in Other Hosts
To further explore the evolution of LASV within and between

hosts, we investigated how often iSNVs become fixed in other

consensus sequences.We defined an iSNV as ‘‘fixed’’ if its minor

allelic variant was observed in one or more LASV consensus se-

quences. We observed a significantly higher nonsynonymous-

to-synonymous ratio (N/S) for unfixed compared to fixed iSNVs

(Figure 7A), suggesting a selective bias against the fixation

of nonsynonymous iSNVs. LASV and EBOV both have similar

numbers of unfixed iSNVs, but LASV has many more fixed

iSNVs, likely due to higher rates of iSNV fixation (or transmission)

in LASV than in EBOV (Figure 7B). However, the putative trans-

mitted (fixed) iSNVs tend to be biased toward synonymous mu-

tations. This bias is much stronger in LASV (Figure 7C, top) but

still detectable in EBOV (Figure 7C, middle). The bias cannot

be attributed to differences in minor allele frequencies between

nonsynonymous and synonymous iSNVs (p value > 0.1; Kolmo-

gorov-Smirnov test) or to a correlation between MAF and preva-

lence in consensus sequences (p value > 0.1 for both N and S;

Pearson’s correlation); therefore, it is best attributed to selection

against transmission and/or fixation of nonsynonymous iSNVs.

A single suspected transmission event, between a pair of

M. natalensis captured on the same day from the same house-

hold, provided an opportunity to observe iSNV fixation dynamics

on short timescales. The two samples, Z0947 and Z0948, are
746 Cell 162, 738–750, August 13, 2015 ª2015 Elsevier Inc.
nearest-neighbors on the LASV phylogeny (Data S1, S2, and

S3), suggesting recent (but not necessarily direct) transmis-

sion (Supplemental Experimental Procedures). Assuming that

transmission occurred from Z0948 to Z0947, we observed that

derived alleles reaching high frequency (DAF > 0.5) in Z0947

tended to be nonsynonymous, while derived alleles remaining

at lower frequency (DAF < 0.5) were always synonymous (Fig-

ure 7C, bottom). Other transmission scenarios (Figure S7H;

Supplemental Experimental Procedures) also confirm that non-

synonymous iSNVs reach high frequency within a host, but fail

to be transmitted to the next host. Along with the dN/dS and

epitope analyses, this supports a model in which nonsynony-

mous iSNVs rise to high frequency within an individual due to

positive selection, but are less likely to become fixed in other

hosts due to purifying selection.

DISCUSSION

Comparing Ebola Virus and Lassa Virus Evolutionary
Dynamics
EBOV and LASV are RNA viruses that can lead to illnesses with

similar clinical symptoms, yet they differ markedly in their epide-

miology and evolutionary dynamics. LASV is more than an order

of magnitude more diverse than EBOV (Figure 2B), and molecu-

lar dating suggests that it has been circulating in Nigeria for over

a thousand years, followed by amore recent spread acrossWest

Africa (Figure 2G). In contrast, it has been suggested that the

Makona variant of EBOV responsible for the EVD epidemic in

West Africa was introduced over the last decade (Dudas and

Rambaut, 2014; Calvignac-Spencer et al., 2014; Gire et al.,

2014).

These analyses, however, provide lower-bound tMRCA esti-

mates of sampled (extant) viral lineages; the true ages of all

LASV and EBOV lineages are likely much older (Taylor et al.,

2010). Because of limited sampling from Guinea and Liberia,



our LASV dating analysis is likely most accurate within

Sierra Leone, although we achieved comparable results when

considering the entire dataset or the individual regions alone

(Figure S3E). Furthermore, our 400-year-old ‘‘out of Nigeria’’

estimate relies on a single sequence from the Ivory Coast; addi-

tional sampling outside the MRU and Nigeria could push back

this date.

Because of the high heterogeneity among LASV lineages,

continuous monitoring of its mutational spectrum and evolu-

tionary change will be critical for the development of effective

vaccines and diagnostics. Since LASV strains cluster by ge-

ography, it is more conserved within individual countries. For

example, average sequence identity among lineages from Sierra

Leone is 90% at the nucleotide level and 95% at the amino acid

level (Figure S1F). A useful strategymight therefore be to develop

diagnostics, vaccines, and sequence-specific therapeutics that

are country specific or that target the most conserved features

of the viral genome.

The 2013–2015 West African EVD epidemic likely originated

from a single zoonotic transmission event (Baize et al., 2014), fol-

lowed by sustained human-to-human transmission and clock-

like, linear accumulation of mutations (Figure 2C). In contrast,

LASV has a clock-like signature on the timescale of decades

(Figure S4B), but not on shorter timescales (Figure 2D). Com-

bined with the intermingling of human andM. natalensis samples

on the phylogenetic tree (Figure 2A), this is consistent with a

genetically diverse pool of LASV being maintained in its rodent

reservoir, with most human infections caused by genetically

distinct viruses. A recent study suggested that human-to-human

transmission of LASV may account for up to 20% of all cases

(Lo Iacono et al., 2015), but we found little support for this in

our dataset. This does not rule out human-to-human transmis-

sion entirely, but it suggests that human transmission chains

are the exception rather than the rule.

LASV is more polymorphic within hosts than EBOV, and

M. natalensis hosts harbor more polymorphic LASV populations

than humans (Figures 5B and 5C). Since most LF and EVD

patients have 0 or 1 iSNVs, the difference difference between

LASV and EBOV is mostly driven by a subset of LF patients

with many LASV iSNVs (Figure 5B and 5C). LASV iSNV

frequencies tend to remain stable over the relatively short period

of hospitalization (Figure S7E), suggesting that intrahost de novo

mutations and frequency changes may take time to develop or

may occur early in the infection. These observations suggest

that—at least in some patients—LASV infections could last

longer than EBOV infections, allowing more time for the genera-

tion of polymorphism within hosts.

Longer infections also provide more time for natural se-

lection to eliminate deleterious mutations from the viral popu-

lation. Consistent with longer infection periods in LASV, dN/dS

ratios are lower within LF patients than in EVD patients

(Figure 5D).

While these findings are consistent with the existence of

chronic LASV infections in humans, they do not constitute proof.

Further studies are needed to verify the causes of high-diversity

LASV infection and the prevalence of nonacute human infec-

tions. Compelling evidence could come from longitudinal sam-

pling asymptomatic carriers of LASV, for example.
Codon Adaptation, Translational Efficiency, and
Genome Abundance
We uncovered significant differences in genome abundance,

CFR, CAI, and translational efficiency of LASV strains from Sierra

Leone and from Nigeria. The increase in CAI of non-Nigerian

strains (Figures 3B–3D), along with higher viral copy numbers

and CFRs in human patients (Figures 4A–4D), would seem to

suggest that the virus evolved toward greater human virulence.

There are indeed many examples suggesting that pathogens

with natural reservoirs may evolve toward greater human

virulence, so long as they remain avirulent in the reservoir host

(Ewald, 1994). We have not, however, been able to establish

causality among these observations. While clinical care for LF

patients is similar at ISTH and KGH (Supplemental Experimental

Procedures)—and time from symptom onset to hospitalization

appears to be the same (Figure 4E)—several additional parame-

ters are beyond our control, including variations in socioeco-

nomic, clinical, and human genetic factors between Sierra Leone

and Nigeria. These prevent us from determining whether the

difference in CFRs has a viral genetic basis and whether varia-

tions in CAI, viral genome abundance, and CFRs are causally

linked. In addition, while we observed significantly higher LASV

genome abundance in LF patients from Sierra Leone, we could

not determine whether this difference translates into higher

infectious titers. Controlled animal studies in BL-4 laboratories

comparing strains from the two countries would help to resolve

this important question.

We expected that the increased CAI of Sierra Leonean LASV

lineages would lead to increased translational output in an

experimental system. Surprisingly, the opposite was true. Niger-

ian LASV lineages had significantly higher in vitro protein outputs

than their Sierra Leonean counterparts (Figures 4G–4I). Transla-

tion-independent mechanisms, such as post-translational mod-

ifications and protein stability, could explain these observations,

regardless of CAI differences.

If the progenitor to Sierra Leone LASV strains indeed had

lower translational output, the emergence of LASV strains with

increased CAI could have been driven by positive selection to

compensate. The higher CAI could then have led to higher

viral titers in human patients. Alternatively, the increase in CAI

could have been caused by genetic drift. Under this scenario,

mutational biases (Supplemental Experimental Procedures)

and drift—combined with insufficient time for mutations to be

exposed to purifying selection in Sierra Leone—led to an

increase in CAI, independently of positive selection. The Sierra

Leonean tMRCA of the LASV population is indeed relatively

recent (Figure 2G), having possibly undergone a recent popula-

tion bottleneck (Lalis et al., 2012). Further work will be required to

disentangle the adaptive and neutral contributions to the evolu-

tion of CAI and determine whether changes in CAI affect viral

fitness and CFRs.

Immune Selection on Lassa Virus within Hosts
The observation that LASV GPC has the highest intrahost dN/dS

(Figure 5E) and the most nonsynonymous iSNVs in predicted

epitopes (Figure 6) suggests that it is a target of immune-

driven diversifying selection within hosts, both in humans and

M. natalensis. This effect was most strongly supported when
Cell 162, 738–750, August 13, 2015 ª2015 Elsevier Inc. 747



we investigated the involvement of B cells (Figure 6A), although

we also found weaker evidence for the role of T cells (Figure 6C).

Given that human LASV infections are typically thought to be

of short duration, it is perhaps surprising that there would be

enough time for the host to mount an antibody response, and

for viral diversity to bemeasurably shaped by this selective pres-

sure. However, this is not entirely implausible, since it is known

that LASV-specific antibodies appear relatively quickly, with

experimentally infected nonhuman primates developing detect-

able IgM titers after 9 days and IgG titers after 12 days (Baize

et al., 2009). Furthermore, it has also been shown that 25% of

LF patients in Sierra Leone are IgM-positive upon admission

and 10% are IgG-positive (Shaffer et al., 2014). Combined with

the observation that several LF patients have LASV iSNV

numbers similar to those observed in M. natalensis (Figures 5B

and 5C), sufficient time for antibody-mediated responses has

likely elapsed in a number of LF patients when they present at

the hospital. We were unable to test seropositivity in our cohort,

but future studies could assess whether there is a correlation

between the presence or absence of LASV-specific antibodies

and the number of iSNVs. Our prediction would be that LF pa-

tients with high numbers of LASV iSNVs should also tend to be

IgM- and/or IgG-positive upon admission.

Conclusions
Our dataset of full-length LASV genomes yields insights into the

biogeography, evolution, and spread of a hemorrhagic fever-

causing virus. Further improvements in collecting, sequencing,

and analyzing LASV and EBOV samples combined with concur-

rent experiments in BL-4 laboratories will allow us to pursue

open areas of inquiry. The catalog of LASV genetic diversity pre-

sented here is thus an essential foundation for the development

of vaccines and diagnostics for a highly diverse, continuously

evolving, and unusually prevalent BL-4 agent.

EXPERIMENTAL PROCEDURES

Ethics Statement

Subjects were recruited for this study using protocols approved by relevant

human subjects committees. All patients were treated with a similar standard

of care.

Samples

All samples were acquired on the day of admission before any treatment reg-

imens had begun. 10 ml of whole blood was collected, and plasma or serum

was prepared. Diagnostic tests for the presence of LASV were performed

on-site. Rodents (all from Sierra Leone) were trapped in case households

and humanely sacrificed, and samples were collected from serum and/or

spleen. All samples were inactivated in either Buffer AVL (QIAGEN) or TRIzol

(Life Technologies), following the manufacturer’s standard protocols and

stored in solar-driven �20�C freezers.

Case Fatality Rates

CFRs were calculated from patients that had all of the following characteris-

tics: (1) known outcome, (2) positive for LASV in the field, (3) confirmed positive

upon retesting in the United States, and (4) sequencing confirmed the pres-

ence of LASV.

Sequencing

cDNA synthesis and Illumina library construction were performed, libraries

were pooled, and sequenced on the Illumina platform. All the data were depos-
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ited at NCBI (BioProject PRJNA254017). EBOV data are available under

PRJNA257197.

Assembly of LASV Genomes

LASV genomes were de novo assembled, followed by read mapping and

duplicate removal.

Trees

Maximum likelihood phylogenies were made with RAxML (v.7.3.0) (Stamatakis

et al., 2005) and rooted using the 1969 Pinneo strain.

Molecular Dating

BEAST (v.1.7.4) (Drummond and Rambaut, 2007) was used with a model

incorporating a log normal relaxed clock, exponential growth, HKYgi with

four categories, and codon partitioning (srd06).

Intrahost Variants

iSNVs were called and filtered taking into consideration minimum coverage,

minimum frequency (5%), strand-bias, and base quality.

Intrahost Selection

A modified version of the McDonald-Kreitman test (McDonald and Kreitman,

1991) was applied to assess evidence for natural selection.

Epitope Prediction

B cell epitopes were predicted using BCPRED (El-Manzalawy et al., 2008).

T cell epitopes were predicted using NetCTL (Larsen et al., 2007).
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F., Doré, A., Soropogui, B., Aniskin, V., Allali, B., et al. (2006). Mastomys nata-

lensis and Lassa fever, West Africa. Emerg. Infect. Dis. 12, 1971–1974.

Lipkin, W.I. (2013). The changing face of pathogen discovery and surveillance.

Nat. Rev. Microbiol. 11, 133–141.

Lo Iacono, G., Cunningham, A.A., Fichet-Calvet, E., Garry, R.F., Grant, D.S.,

Khan, S.H., Leach, M., Moses, L.M., Schieffelin, J.S., Shaffer, J.G., et al.

(2015). Using modelling to disentangle the relative contributions of zoonotic

and anthroponotic transmission: the case of lassa fever. PLoS Negl. Trop.

Dis. 9, e3398.

Lukashevich, I.S. (1992). Generation of reassortants between African arenavi-

ruses. Virology 188, 600–605.

McCormick, J.B., and Fisher-Hoch, S.P. (2002). Lassa fever. Curr. Top. Micro-

biol. Immunol. 262, 75–109.

McCormick, J.B., King, I.J., Webb, P.A., Scribner, C.L., Craven, R.B., John-

son, K.M., Elliott, L.H., and Belmont-Williams, R. (1986). Lassa fever. Effective

therapy with ribavirin. N. Engl. J. Med. 314, 20–26.

McDonald, J.H., and Kreitman, M. (1991). Adaptive protein evolution at the

Adh locus in Drosophila. Nature 351, 652–654.

Paessler, S., and Walker, D.H. (2013). Pathogenesis of the viral hemorrhagic

fevers. Annu. Rev. Pathol. 8, 411–440.

Pandey, A., Atkins, K.E., Medlock, J., Wenzel, N., Townsend, J.P., Childs, J.E.,

Nyenswah, T.G., Ndeffo-Mbah, M.L., and Galvani, A.P. (2014). Strategies for

containing Ebola in West Africa. Science 346, 991–995.

Parameswaran, P., Charlebois, P., Tellez, Y., Nunez, A., Ryan, E.M., Malboeuf,

C.M., Levin, J.Z., Lennon, N.J., Balmaseda, A., Harris, E., and Henn, M.R.

(2012). Genome-wide patterns of intrahuman dengue virus diversity reveal

associations with viral phylogenetic clade and interhost diversity. J. Virol. 86,

8546–8558.

Plotkin, J.B., and Kudla, G. (2011). Synonymous but not the same: the causes

and consequences of codon bias. Nat. Rev. Genet. 12, 32–42.

Rocha, E.P., Smith, J.M., Hurst, L.D., Holden, M.T., Cooper, J.E., Smith, N.H.,

and Feil, E.J. (2006). Comparisons of dN/dS are time dependent for closely

related bacterial genomes. J. Theor. Biol. 239, 226–235.

Shaffer, J.G., Grant, D.S., Schieffelin, J.S., Boisen, M.L., Goba, A., Hartnett,

J.N., Levy, D.C., Yenni, R.E., Moses, L.M., Fullah, M., et al.; Viral Hemorrhagic

Fever Consortium (2014). Lassa fever in post-conflict sierra leone. PLoS Negl.

Trop. Dis. 8, e2748.
Cell 162, 738–750, August 13, 2015 ª2015 Elsevier Inc. 749

http://refhub.elsevier.com/S0092-8674(15)00897-1/sref1
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref1
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref1
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref1
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref2
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref2
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref3
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref3
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref3
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref4
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref4
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref4
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref4
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref5
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref5
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref5
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref5
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref6
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref6
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref6
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref7
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref7
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref8
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref8
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref8
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref9
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref9
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref10
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref10
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref10
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref11
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref11
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref11
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref11
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref12
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref12
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref13
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref13
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref13
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref13
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref13
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref14
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref14
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref15
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref15
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref16
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref16
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref17
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref17
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref18
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref18
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref19
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref19
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref20
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref20
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref20
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref21
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref21
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref21
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref22
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref22
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref22
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref22
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref23
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref23
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref24
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref24
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref25
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref25
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref25
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref26
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref26
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref26
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref27
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref27
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref27
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref28
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref28
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref28
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref29
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref29
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref30
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref30
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref30
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref30
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref30
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref31
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref31
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref32
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref32
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref33
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref33
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref33
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref34
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref34
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref35
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref35
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref36
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref36
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref36
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref37
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref37
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref37
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref37
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref37
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref38
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref38
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref39
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref39
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref39
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref40
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref40
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref40
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref40


Shapiro, B.J., David, L.A., Friedman, J., and Alm, E.J. (2009). Looking for

Darwin’s footprints in the microbial world. Trends Microbiol. 17, 196–204.

Sharp, P.M., and Li, W.H. (1987). The codon Adaptation Index–a measure of

directional synonymous codon usage bias, and its potential applications.

Nucleic Acids Res. 15, 1281–1295.

Southern, P. (1996). Arenaviridae: the viruses and their replication. In Funda-

mental Virology, B.N. Fields, D.M. Knipe, and P.M. Howley, eds. (Philadelphia:

Lippincott-Raven), pp. 675–690.

Stamatakis, A., Ludwig, T., and Meier, H. (2005). RAxML-III: a fast program for

maximum likelihood-based inference of large phylogenetic trees. Bioinformat-

ics 21, 456–463.

Stenglein, M.D., Jacobson, E.R., Chang, L.W., Sanders, C., Hawkins, M.G.,

Guzman, D.S., Drazenovich, T., Dunker, F., Kamaka, E.K., Fisher, D., et al.

(2015). Widespread recombination, reassortment, and transmission of unbal-

anced compound viral genotypes in natural arenavirus infections. PLoS

Pathog. 11, e1004900.

Taylor, D.J., Leach, R.W., and Bruenn, J. (2010). Filoviruses are ancient and

integrated into mammalian genomes. BMC Evol. Biol. 10, 193.
750 Cell 162, 738–750, August 13, 2015 ª2015 Elsevier Inc.
Team,W.H.O.E.R. (2014). Ebola virus disease inWest Africa - the first 9months

of the epidemic and forward projections. N. Engl. J. Med. 371, 1481–1495.

Troup, J.M., White, H.A., Fom, A.L., and Carey, D.E. (1970). An outbreak of

Lassa fever on the Jos plateau, Nigeria, in January-February 1970. A prelimi-

nary report. Am. J. Trop. Med. Hyg. 19, 695–696.

Tulloch, F., Atkinson, N.J., Evans, D.J., Ryan, M.D., and Simmonds, P. (2014).

RNA virus attenuation by codon pair deoptimisation is an artefact of increases

in CpG/UpA dinucleotide frequencies. eLife 3, e04531.

Vieth, S., Torda, A.E., Asper, M., Schmitz, H., and Günther, S. (2004).

Sequence analysis of L RNA of Lassa virus. Virology 318, 153–168.

Wakeley, J. (1996). The excess of transitions among nucleotide substitutions:

new methods of estimating transition bias underscore its significance. Trends

Ecol. Evol. 11, 158–162.

Wertheim, J.O., and Kosakovsky Pond, S.L. (2011). Purifying selection

can obscure the ancient age of viral lineages. Mol. Biol. Evol. 28, 3355–

3365.

Wertheim, J.O., Chu, D.K., Peiris, J.S., Kosakovsky Pond, S.L., and Poon,

L.L. (2013). A case for the ancient origin of coronaviruses. J. Virol. 87,

7039–7045.

http://refhub.elsevier.com/S0092-8674(15)00897-1/sref41
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref41
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref42
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref42
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref42
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref43
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref43
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref43
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref44
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref44
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref44
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref45
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref45
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref45
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref45
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref45
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref46
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref46
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref47
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref47
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref48
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref48
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref48
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref49
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref49
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref49
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref50
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref50
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref51
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref51
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref51
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref52
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref52
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref52
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref53
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref53
http://refhub.elsevier.com/S0092-8674(15)00897-1/sref53

	Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus
	Introduction
	Results
	Generation of a Large Dataset of Lassa Virus Genomes
	Lassa Virus Strains Are Genetically Diverse and Cluster Based on Geographic Location
	Lassa Virus Infections Are the Result of Multiple Independent Reservoir-to-Human Transmissions
	Lassa Virus Has Ancient Origins in Modern-Day Nigeria and Has Recently Spread across West Africa
	Non-Nigerian Lassa Virus Strains Have Higher Codon Adaptation to Mammalian Hosts
	Lassa Virus Genome Abundance and Case Fatality Rates Differ between Nigeria and Sierra Leone
	Nigerian Lassa Virus Strains Have Higher Protein Output than Do Sierra Leonean Strains
	Lassa Virus Is a More Diverse Intrahost than Is Ebola Virus
	Natural Selection Is Acting on the Lassa Virus Glycoprotein
	Nonsynonymous Lassa Virus Intrahost Variants Accumulate in Predicted Epitopes in the Glycoprotein
	Intrahost Variants Interfere with Antibody Binding
	Nonsynonymous Lassa Virus Intrahost Variants Tend Not to Become Fixed in Other Hosts

	Discussion
	Comparing Ebola Virus and Lassa Virus Evolutionary Dynamics
	Codon Adaptation, Translational Efficiency, and Genome Abundance
	Immune Selection on Lassa Virus within Hosts
	Conclusions

	Experimental Procedures
	Ethics Statement
	Samples
	Case Fatality Rates
	Sequencing
	Assembly of LASV Genomes
	Trees
	Molecular Dating
	Intrahost Variants
	Intrahost Selection
	Epitope Prediction

	Supplemental Information
	Acknowledgments
	References


